Coupled motions under compressive load in intact and ACL-deficient knees: a cadaveric study.

نویسندگان

  • David Liu-Barba
  • M L Hull
  • S M Howell
چکیده

Knowledge of the coupled motions, which develop under compressive loading of the knee, is useful to determine which degrees of freedom should be included in the study of tibiofemoral contact and also to understand the role of the anterior cruciate ligament (ACL) in coupled motions. The objectives of this study were to measure the coupled motions of the intact knee and ACL-deficient knee under compression and to compare the coupled motions of the ACL-deficient knee with those of the intact knee. Ten intact cadaveric knees were tested by applying a 1600 N compressive load and measuring coupled internal-external and varus-valgus rotations and anterior-posterior and medial-lateral translations at 0 deg, 15 deg, and 30 deg of flexion. Compressive loads were applied along the functional axis of axial rotation, which coincides approximately with the mechanical axis of the tibia. The ACL was excised and the knees were tested again. In the intact knee, the peak coupled motions were 3.8 deg internal rotation at 0 deg flexion changing to -4.9 deg external rotation at 30 deg of flexion, 1.4 deg of varus rotation at 0 deg flexion changing to -1.9 deg valgus rotation at 30 deg of flexion, 1.4 mm of medial translation at 0 deg flexion increasing to 2.3 mm at 30 deg of flexion, and 5.3 mm of anterior translation at 0 deg flexion increasing to 10.2 mm at 30 deg of flexion. All changes in the peak coupled motions from 0 deg to 30 deg flexion were statistically significant (p<0.05). In ACL-deficient knees, there was a strong trend (marginally not significant, p=0.07) toward greater anterior translation (12.7 mm) than that in intact knees (8.0 mm), whereas coupled motions in the other degrees of freedom were comparable. Because the coupled motions in all four degrees of freedom in the intact knee and ACL-deficient knee are sufficiently large to substantially affect the tibiofemoral contact area, all degrees of freedom should be included when either developing mathematical models or designing mechanical testing equipment for study of tibiofemoral contact. The increase in coupled anterior translation in ACL-deficient knees indicates the important role played by the ACL in constraining anterior translation during compressive loading.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology.

PURPOSE Although it is well known that the anterior cruciate ligament (ACL) is a primary restraint of the knee under anterior tibial load, the role of the ACL in resisting internal tibial torque and the pivot shift test is controversial. The objective of this study was to determine the effect of these 2 external loading conditions on the kinematics of the intact and ACL-deficient knee and the i...

متن کامل

The role of axial compressive and quadriceps forces in noncontact anterior cruciate ligament injury: a cadaveric study.

BACKGROUND Compressive and quadriceps forces have been associated with noncontact anterior cruciate ligament (ACL) injury. The purpose of this study was to quantify the relative importance of each load component during noncontact ACL injury. HYPOTHESIS We hypothesized that the introduction of a quadriceps force lowers the axial compressive force threshold to produce ACL injury. STUDY DESIGN...

متن کامل

Varus-valgus instability in the anterior cruciate ligament-deficient knee: effect of posterior tibial load

BACKGROUND Anterior cruciate ligament (ACL) injury is often accompanied with medial collateral ligament (MCL) injury. Assessment of varus-valgus (V-V) instability in the ACL-deficient knee is crucial for the management of the concomitant ACL-collateral ligaments injury. We evaluated the V-V laxity and investigated the effect of additional posterior tibial load on the laxity in the ACL-deficient...

متن کامل

Lateral Meniscus Posterior Root and Meniscofemoral Ligaments as Stabilizing Structures in the ACL-Deficient Knee: A Biomechanical Study

BACKGROUND The biomechanical effects of lateral meniscal posterior root tears with and without meniscofemoral ligament (MFL) tears in anterior cruciate ligament (ACL)-deficient knees have not been studied in detail. PURPOSE To determine the biomechanical effects of the lateral meniscus (LM) posterior root tear in ACL-intact and ACL-deficient knees. In addition, the biomechanical effects of di...

متن کامل

The level of compressive load affects conclusions from statistical analyses to determine whether a lateral meniscal autograft restores tibial contact pressure to normal: a study in human cadaveric knees.

This study addressed the question of whether the level of compressive load would affect the conclusions from statistical analyses aimed at determining how well a lateral meniscal autograft restores tibial contact (as indicated by the maximum contact pressure, mean pressure, and contact area) to that of the intact knee. If statistical analyses indicated that normal tibial contact was not restore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 129 6  شماره 

صفحات  -

تاریخ انتشار 2007